PyTorch Ignite

W&B를 PyTorch Ignite와 통합하는 방법.

Ignite는 트레이닝 및 검증 중에 메트릭, 모델/옵티마이저 파라미터, 그레이디언트를 기록하기 위해 Weights & Biases 핸들러를 지원합니다. 또한 모델 체크포인트를 Weights & Biases cloud에 기록하는 데 사용할 수도 있습니다. 이 클래스는 wandb 모듈의 래퍼이기도 합니다. 즉, 이 래퍼를 사용하여 모든 wandb 함수를 호출할 수 있습니다. 모델 파라미터와 그레이디언트를 저장하는 방법에 대한 예시를 참조하세요.

기본 설정

from argparse import ArgumentParser
import wandb
import torch
from torch import nn
from torch.optim import SGD
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torchvision.transforms import Compose, ToTensor, Normalize
from torchvision.datasets import MNIST

from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator
from ignite.metrics import Accuracy, Loss

from tqdm import tqdm


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=-1)


def get_data_loaders(train_batch_size, val_batch_size):
    data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])

    train_loader = DataLoader(MNIST(download=True, root=".", transform=data_transform, train=True),
                              batch_size=train_batch_size, shuffle=True)

    val_loader = DataLoader(MNIST(download=False, root=".", transform=data_transform, train=False),
                            batch_size=val_batch_size, shuffle=False)
    return train_loader, val_loader

ignite에서 WandBLogger를 사용하는 것은 모듈식 프로세스입니다. 먼저, WandBLogger 오브젝트를 만듭니다. 다음으로, 메트릭을 자동으로 기록하기 위해 트레이너 또는 평가기에 연결합니다. 다음은 이 예시입니다.

  • 트레이너 오브젝트에 연결된 트레이닝 손실을 기록합니다.
  • 평가기에 연결된 검증 손실을 기록합니다.
  • 학습률과 같은 선택적 파라미터를 기록합니다.
  • 모델을 감시합니다.
from ignite.contrib.handlers.wandb_logger import *
def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval):
    train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
    model = Net()
    device = 'cpu'

    if torch.cuda.is_available():
        device = 'cuda'

    optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
    trainer = create_supervised_trainer(model, optimizer, F.nll_loss, device=device)
    evaluator = create_supervised_evaluator(model,
                                            metrics={'accuracy': Accuracy(),
                                                     'nll': Loss(F.nll_loss)},
                                            device=device)

    desc = "ITERATION - loss: {:.2f}"
    pbar = tqdm(
        initial=0, leave=False, total=len(train_loader),
        desc=desc.format(0)
    )
    #WandBlogger 오브젝트 생성
    wandb_logger = WandBLogger(
    project="pytorch-ignite-integration",
    name="cnn-mnist",
    config={"max_epochs": epochs,"batch_size":train_batch_size},
    tags=["pytorch-ignite", "mninst"]
    )

    wandb_logger.attach_output_handler(
    trainer,
    event_name=Events.ITERATION_COMPLETED,
    tag="training",
    output_transform=lambda loss: {"loss": loss}
    )

    wandb_logger.attach_output_handler(
    evaluator,
    event_name=Events.EPOCH_COMPLETED,
    tag="training",
    metric_names=["nll", "accuracy"],
    global_step_transform=lambda *_: trainer.state.iteration,
    )

    wandb_logger.attach_opt_params_handler(
    trainer,
    event_name=Events.ITERATION_STARTED,
    optimizer=optimizer,
    param_name='lr'  # optional
    )

    wandb_logger.watch(model)

선택적으로 ignite EVENTS를 활용하여 메트릭을 터미널에 직접 기록할 수 있습니다.

    @trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
    def log_training_loss(engine):
        pbar.desc = desc.format(engine.state.output)
        pbar.update(log_interval)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_training_results(engine):
        pbar.refresh()
        evaluator.run(train_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics['accuracy']
        avg_nll = metrics['nll']
        tqdm.write(
            "Training Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}"
            .format(engine.state.epoch, avg_accuracy, avg_nll)
        )

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_validation_results(engine):
        evaluator.run(val_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics['accuracy']
        avg_nll = metrics['nll']
        tqdm.write(
            "Validation Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}"
            .format(engine.state.epoch, avg_accuracy, avg_nll))

        pbar.n = pbar.last_print_n = 0

    trainer.run(train_loader, max_epochs=epochs)
    pbar.close()


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument('--batch_size', type=int, default=64,
                        help='input batch size for training (default: 64)')
    parser.add_argument('--val_batch_size', type=int, default=1000,
                        help='input batch size for validation (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10,
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.01,
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5,
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--log_interval', type=int, default=10,
                        help='how many batches to wait before logging training status')

    args = parser.parse_args()
    run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum, args.log_interval)

이 코드는 다음 시각화 자료를 생성합니다.

자세한 내용은 Ignite Docs를 참조하세요.